In Situ Probing the Relaxation Properties of Ultrathin Polystyrene Films by Using Electric Force Microscopy
نویسندگان
چکیده
The rapid development of nanoscience and nanotechnology involves polymer films with thickness down to nanometer scale. However, the properties of ultrathin polymer films are extremely different from that of bulk matrix or thin films. It is challenging to distinguish the changes of physical properties in ultrathin films using conventional techniques especially when it locates near the glass transition temperature (T g). In this work, we successfully evaluated a series of physical properties of ultrathin polystyrene (PS) films by in situ characterizing the discharging behavior of the patterned charges using electric force microscopy. By monitoring the surface potential in real time, we found that the T g of ultrathin PS films is clearly independent of film thickness, which are greatly different from that of thin PS films (film thickness larger than 10 nm).
منابع مشابه
Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy
The relaxation behaviors of thin polymer films show a strong dependence on temperature and film thickness. Direct quantitative detection of the relaxation behaviors of thin polymer films at nanometer scale by traditional instruments is however challenging. In this study, we employed atomic force microscopy (AFM)-based force-distance curve to study the relaxation dynamics and the film thickness ...
متن کاملDielectric properties of thin insulating layers measured by Electrostatic Force Microscopy
In order to measure the dielectric permittivity of thin insulting layers, we developed a method based on electrostatic force microscopy (EFM) experiments coupled with numerical simulations. This method allows to characterize the dielectric properties of materials without any restrictions of film thickness, tip radius and tip-sample distance. The EFM experiments consist in the detection of the e...
متن کاملProbing Polymer Viscoelastic Relaxations with Temperature-Controlled Friction Force Microscopy
A quantitative method, using temperature-controlled friction force microscopy (FFM), has been developed to determine the frictional (dissipative) character of thin polymer films. With this method variations in friction are sampled over micrometer-scale regions and are reduced to “friction histograms,” yielding the distribution of frictional forces on the surface. The temperature dependence of t...
متن کاملOn the persistence of polar domains in ultrathin ferroelectric capacitors.
The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferr...
متن کاملStress evolution in GaAsN alloy films
We have investigated stress evolution in dilute nitride GaAs1−xNx alloy films grown by plasma-assisted molecular-beam epitaxy. For coherently strained films sx,2.5% d, a comparison of stresses measured via in situ wafer curvature measurements, with those determined from x-ray rocking curves using a linear interpolation of lattice parameter and elastic constants, suggests significant bowing of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017